资源三号 03 星激光测高数据处理与复合测绘应用

李国元^{1,2}, 唐新明^{1,2*}, 周 平¹, 陈继溢^{1,2}, 刘 诏^{1,2}, 窦显辉¹, 周晓青^{1,2}, 王 霞¹

(1. 自然资源部国土卫星遥感应用中心,北京100048;

2. 自然资源部国土卫星遥感应用重点实验室,北京100048)

摘 要:资源三号 03 星是自然资源部主持建造的用于 1:50 000 立体测图的陆地遥感业务卫星,该 星装备了业务化的激光测高仪,主要用于获取高精度高程控制点。论文针对资源三号 03 星激光测高 数据,研究了标准化测绘处理流程和高程控制点提取方法,在内蒙古苏尼特右旗和江苏苏州开展了精 度验证,并选择黑龙江和河北两个实验区开展了复合测绘应用验证。精度验证结果表明,资源三号 03 星激光点在内蒙古苏尼特右旗平坦区域高程精度为 (0.051±0.232) m,在江苏苏州城市建成区的激 光点总体精度为 (0.414±6.213) m,经高程控制点提取和质量标记后的激光点高程误差为 (-0.526±0.624) m,能满足 1:50 000 测图高程控制需求。复合测绘应用表明,利用资源三号 03 星激光 高程控制点,立体影像高程精度在黑龙江平坦地区能从 5.27 m 提高到 2.58 m,河北太行山区能从 11.25 m 提高到 4.45 m;无论是平地还是山区,资源三号 03 星激光高程控制点均能有效提高立体影像 的高程精度并满足 1:50 000 测图需求。

关键词:资源三号 03 星; 激光测高; 复合测绘; 高程控制点; 全球测图 中图分类号: P237 文献标志码: A **DOI**: 10.3788/IRLA20210356

Laser altimetry data processing and combined surveying application of ZY3-03 satellite

Li Guoyuan^{1,2}, Tang Xinming^{1,2*}, Zhou Ping¹, Chen Jiyi^{1,2}, Liu Zhao^{1,2}, Dou Xianhui¹, Zhou Xiaoqing^{1,2}, Wang Xia¹

(1. Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China;
 Key Laboratory of Land Satellite Remote Sensing Application Center, Ministry of Natural Resources, Beijing 100048, China)

Abstract: ZY3-03 is a land remote sensing satellite for 1: 50 000 stereo mapping built by the Ministry of Natural Resources. It is equipped with operational laser altimeter, which is mainly used to obtain high-precision elevation control points. In this paper, aiming at the laser altimetry data of ZY3-03 satellite, the standardized surveying processing flow and the method of extracting elevation control points is studied. Moreover, the accuracy verification in Sunid Right Banner of Inner Mongolia and Suzhou of Jiangsu Province is implemented, and the combined surveying and mapping application in Heilongjiang and Hebei areas is experimented and validated. The accuracy verification results show that the elevation accuracy of ZY3-03 laser points in the flat area of Sunid Right Banner in Inner Mongolia is (0.051±0.232) m, and the overall accuracy of the laser points in the urban area

收稿日期:2021-11-10; 修订日期:2021-12-20

基金项目:国家自然科学基金 (41971425, 41871382)

作者简介:李国元,男,副研究员,博士,主要从事激光测高卫星、水资源遥感等方面的研究。

通讯作者:唐新明,男,研究员,主要从事自然资源陆地卫星总体设计及遥感应用的相关研究。

of Suzhou, Jiangsu is (0.414 ± 6.213) m, and the elevation accuracy after elevation control points extraction is (-0.526 ± 0.624) m, which can meet the elevation control requirement of 1:50 000 mapping; The application of combined surveying and mapping shows that the elevation accuracy of stereo images can be improved from 5.27 m to 2.58 m in flat area of Heilongjiang and from 11.25 m to 4.45 m in Taihang mountain area of Hebei by using laser elevation control points derived from the ZY3-03 satellite. It is concluded that the elevation accuracy of stereo images can be effectively improved by using laser elevation control points of ZY3-03 satellite in both flat and mountainous areas, and the requirement of 1:50 000 mapping can be met.

Key words: ZY3-03; laser altimetry; combined surveying; elevation control point; global mapping

0 引 言

基础地理信息数据是国家重要的基础性、战略性 信息资源,卫星测绘是支撑国民经济社会建设高质量 发展的重要手段。随着激光技术的快速发展,卫星激 光测高已经成为卫星测绘的重要手段,特别是在全球 高程控制点获取、境外地区高精度立体测绘方面发挥 了越来越重要的作用^[1-2]。美国先后通过航天飞机 SLA-1/2、ICESat-1/2 获取了全球大量的高程控制点数 据,支撑了其全球战略实施及对外政治军事行动^[3-4]。 我国先后在资源三号 02 星、高分七号 01 星上装备了 激光测高仪,通过激光与影像复合测绘的方式分别满 足 1:50 000、1:10 000 无地面控制点的立体测图高程 精度要求。其中资源三号 02 星上实现了我国对地观 测领域卫星激光测高"从无到有"的重要突破,为卫星 激光测高的快速发展奠定了重要技术基础^[5-7]。

资源三号 03 星基本继承资源三号 02 星^[8],其中 激光测高仪升级为业务化载荷,主要用于获取高精度 的高程控制点,然而受大气^[9]、地形^[10]、地物等因素影 响,并不是每个激光点均能用作高程控制,自动筛选 高精度、高可靠的激光高程控制点非常关键。参考文 献 [11-12] 对 ICESat/GLAS 的高程控制点提取方法进 行了较系统的研究,但资源三号 03 星激光测高仪由 于受体积、口径、功耗等条件限制,没有采用全波形 记录模式,仅记录了回波离散阈值,这对高精度高程 控制点提取提出了一定挑战。将激光高程控制点参 与立体影像区域网平差处理,是激光与影像复合测绘 的重要步骤,能有效提高立体影像在无地面控制点条 件的高程测量精度,在境外地区测图有非常重要的应 用价值^[13-14]。

文章介绍了资源三号 03 星的基本参数,并将

03 星的激光测高仪与 02 星进行了对比,研究了激光 测高数据处理及高程控制点提取方法,对 03 星立体 影像与激光复合测绘进行了应用分析。

1 资源三号 03 星介绍

1.1 资源三号 03 星

资源三号是我国首个高分辨率民用立体测图卫 星星座,01星、02星分别于2012年、2016年成功发 射,资源三号03星于2020年7月25日在太原卫星发 射中心成功发射。除继承资源三号02星几何分辨率 分别为2.1m正视、2.7m前后视的三线阵相机和 5.8m多光谱相机载荷外,资源三号03星还实现了国 产星敏感器以及激光测高仪的业务化,同时将卫星设 计寿命从原来的5年提高为8年。卫星运行于回归 周期为59天的太阳同步回归圆轨道,通过三星组网, 重访周期从3天缩短到1天,保证我国高分辨率立体 测绘数据的长期稳定获取,形成全球领先的业务化立 体观测能力^[8]。

1.2 资源三号 03 星激光测高仪

资源三号 03 星激光测高仪在 02 星试验性载荷 的基础上做了适当的优化改进,如表 1 所示。具体包 括:设计寿命从试验性载荷变为 8 年,同时增加了一 个备份激光器,激光发散角从 150 μrad 缩小为 90 μrad, 对应地面光斑大小约 45 m,采用前后沿鉴别的方式, 具有多阈值探测能力。

资源三号 03 星激光测高仪的测距原理如图 1 所示。受硬件资源等限制, 03 星激光测高仪的硬件误差 主要包括发射波形时刻鉴别误差、回波时刻鉴别误 差、晶振计时误差和 TDC (Time Distance Calculator) 时间间隔测量误差, 平地理论测距精度优于 0.3 m。

资源三号03星激光测高仪回波有四个通道,包

表1 资源三号 02/03 星激光测高仪参数对比表

Tab.1 Parameters comparison between ZY3-02 and ZY3-03 satellite laser altimeter

	-	
Parameter	ZY3-02 ^[15]	ZY3-03
Number of beams	Only one	Two, one as backup
Frequency/Hz	2	2
Central wavelength/nm	1 064.4	1 064.4
Pulse energy/mJ	200	150
Pulse width/ns	7	5
Divergence angle/µrad	150	90
Ground footprint size	75 m@500 km	45 m@500 km
Pointing change/µrad	≤10	≤5
Receiving aperture/mm	220	260
Total transmitted pulse		>1×10 ⁸
Lifetime		8 years
Power consumption/W	≤50	≤80
Weight/kg	≤40	≤95
Terrain adaptability/(°)	≤2	≤5
Ranging accuracy/m	≤1	≤0.3

括三个宽带通道和一个窄带通道。其中宽带通道又 分为三个子通道,分别为高阈值 TH1 子通道,低阈值 TH2 子通道和噪声监测阈值 TH4 子通道。窄带通道 为 TH3 通道。噪声监测阈值 TH4 子通道类似于资源 三号 02 星设计状态,仅记录门内第一个回波的前沿, 输出测距值,同时可以输出距离内的过阈值脉冲个 数,用于在轨检测噪声,指导阈值设置;其他 TH1, TH2 和 TH3 三个通道均记录门内回波脉冲的前沿和 后沿,并进行输出,每个通道均具有记录四次回波脉 冲的能力。

根据主波时刻和回波时刻计算激光测高仪的飞 行时间为:

$$T_{tof} = T_{echo} - T_{tx} - \Delta T_{THi} \tag{1}$$

式中: ΔT_{THi} 为各通道延迟常数。

对大气延迟影响Δ**R**等进行改正后,激光的测距 值为:

$$R = \frac{c}{2} T_{tof} - \Delta R \tag{2}$$

Fig.1 Diagram of ZY3-03 satellite laser altimeter based on the threshold detection and ranging

2 资源三号 03 星激光测高数据标准化测绘 处理

对地观测卫星激光测高数据在获取过程中,受到 激光指向、卫星轨道和姿态、大气、地球物理潮汐、 大光斑内复杂地形地物等多种因素的影响,标准化的 测绘处理是确保资源三号 03 星高精度激光测高的重 要前提。

2.1 资源三号 03 星激光数据处理流程

如图 2 所示, 根据卫星激光测高严密几何模型进

行激光地面足印几何定位,结合卫星上搭载的 GPS 定位仪器和星敏感器获得的卫星位置和姿态信息,解算激光足印精确的三维坐标^[16]。卫星激光测高 严密几何定位模型如下式所示:

$$\begin{pmatrix} X_{P} \\ Y_{P} \\ Z_{P} \end{pmatrix} = \begin{pmatrix} X_{S} \\ Y_{S} \\ Z_{S} \end{pmatrix} + R_{J2000}^{WGS\,84} R_{Body}^{J2000}$$
$$\begin{bmatrix} Lx \\ Ly \\ Lz \end{bmatrix} - \begin{pmatrix} Dx \\ Dy \\ Dz \end{pmatrix} + \begin{pmatrix} \rho \sin \theta \cos \alpha \\ \rho \sin \theta \sin \alpha \\ -\rho \cos \theta \end{bmatrix}$$
(3)

式中: [*X_P Y_P Z_P*]^T为激光足印点在 WGS84 坐标系下的 三维坐标; [*X_s Y_s Z_s*]^T为该激光足印点对应时刻卫星 在 WGS84 坐标系的三维坐标; *R*^{J2000}为星敏感器测定 的激光足印点对应时刻卫星本体坐标系与 *J*2000 坐 标系之间的旋转矩阵; *R*^{J2000}_{WGS84}为激光足印点对应时刻 WGS84 坐标系与 *J*2000 坐标系之间的旋转矩阵; [*Dx Dy Dz*]^T为 GPS 的相位中心在卫星本体坐标系下 的坐标; [Lx Ly Lz]^T为激光参考中心在卫星本体坐标 系下的坐标; ρ为激光所测距离值; θ为激光指向与本 体坐标系 Z轴的负向夹角; α为激光指向在 XOY 平面 上的投影与 X轴正向夹角。激光指向角也可以采用 与卫星本体系三个轴的三个夹角进行描述, 两者属于 等价关系^[1]。

截止到 2021 年 4 月 30 日,资源三号 03 星激光发

射次数超过125万次,有效点数约72万个,占比约57.6%,全球分布情况如图3所示。资源三号03星激

光测高标准产品目前已在自然资源部国土卫星遥感 应用中心实现业务化处理。

图 3 资源三号 03 星激光点位分布示意图 Fig.3 Distribution of ZY3-03 satellite laser altimetry points all over the world

2.2 高程控制点提取

高程控制点提取是复合测绘应用的重要基础,具备全波形采样的激光高程控制点提取方法已得到有效应用^[11,17],但资源三号 03 星不具备全波形采样功能,文中在借鉴资源三号 02 星试验性激光测高载荷处理经验的基础上^[5],结合资源三号 03 星激光测高仪 阈值探测的特点,针对性地提出了高程控制点 ECP (Elevation control Point)提取及质量标记的方法,具体流程如下:

(1)确保大气、潮汐、精密轨道和姿态等参数的有效性,对激光测高标准产品的完备性进行质量 控制;

(2)利用全球 30 m 的地表覆盖数据 GLC30,将落 在水面的激光点标记为 10;

(3)结合阈值探测和地形地物影响,结合波形阈 值计算的脉宽,对没有落水的激光点,设定回波脉宽 阈值为 $\tau_s \leq 20$ ns 时,默认光斑内坡度小于 2°,此时激 光点标记为 1;若 20 ns $\leq \tau_s \leq 40$ ns,默认坡度介于 2°~5°,质量标记为 2,其余的标记为 3;

(4) 进一步地, 对标记为1和2的激光点, 借鉴资

源三号 02 星激光点的提取思想,采用全球 30 m 格网的 AW3D30 产品,计算激光点高程与光斑范围内 AW3D30 平均高的差值 dh。如果高差|dh|≤2 m,则原标记不变;若高差 2 m<|dh|≤5 m,则原标记为 1 的点变为 2;若|dh|>5 m,则原标记为 1 和 2 的点均变为 3。

经筛选提取后,激光点标记为1的能用作高程控制点使用,标记为2的点仅推荐在标记为1的点较少的情况下参考使用,标记为3的误差较大不推荐使用,标记为10的代表该点落水。

2.3 精度验证与分析

利用地面红外探测器是实现激光点绝对几何精 度验证的最直观方法^[18],但该方法成本较大。文中在 实现激光点标准化测绘处理后,选择内蒙古苏尼特右 旗和江苏苏州两个验证区,结合外业 RTK-GPS 和高 精度机载 LiDAR 点云数据,对资源三号 03 星激光点 精度进行验证和分析。

(1) 在轨定标区附近验证结果

在内蒙古苏尼特右旗外场定标区附近,针对 2020年9月8日、9月23日的资源三号03星实际激 光落点位置,选择地形平坦、没有植被和地物影响的 7个激光点,采用高精度的 RTK-GPS 测量方式,对每 个激光点以约 5 m 的间隔测量其附近地面点的三维 坐标,形成 RTK-GPS 点阵,如图 4 所示。

Fig.4 Illustration of RTK-GPS for validation in filed surveying

以激光点平面位置为中心,外扩 25 m 统计光斑 范围内 RTK-GPS 的平均高作为参考,统计激光点的 高程误差,结果如表 2 所示。该区域激光测高精度较 高,高程精度为 (0.051±0.232) m。

(2) 附加 ECP 标记的江苏苏州验证结果

2020年10月10日资源三号03星第1183轨经 过江苏苏州,有16个激光点位于验证区内。参考数 据为高精度的机载LiDAR点云数据,获取时间为 2018年,高程精度优于0.15m,高程基准统一为WGS84 大地高。针对进行了高程控制点ECP标记的资源三 号03星激光测高标准产品,以激光点平面位置为中 心,外扩25m统计光斑范围内LiDAR点云数据平均 高,计算其与激光点高程误差,结果如表3所示。

主 2 由营士艾尼特士诲次海口县 02 昆激业占实地论证结用主	(伯 位, m)
农 2 内家口办尼待石旗页际二号 05 至成九点关地独证纪末农	(半位: 11)

Tab.2	Validation result of ZY3-03 las	ser points on Sunid	Right Banner in Inner Mongol	lia (Unit: m)
Data	ID	Elevetion	Defense almetice	Emer

Date	ID	Elevation	Reference elevation	Error
2020 00 00	86912108	1 007.364	1 007.218	0.146
2020-09-08	86912110	1 052.404	1 052.183	0.221
	92095212	1 073.461	1 073.316	0.145
	92095214	1 079.237	1 079.174	0.063
2020-09-23	92095216	1 074.751	1 074.405	0.346
	92095220	1 086.253	1 086.500	-0.247
	92095222	1 094.673	1 094.992	-0.319
		Max		0.346
Statistical result		Min		0.051
		RMSE		0.232

表 3 2020 年 10 月 10 日的 1183 轨激光测高精度 (单位: m)

Tab.5 Laser elevation accuracy of the No.1105 of bit on 10 Oct, 2020 (Unit, h	Tab.3	Laser	elevation	accuracy	of the	No.1183	orbit on	10 th Oct	, 2020	(Unit: n
---	-------	-------	-----------	----------	--------	---------	----------	----------------------	--------	----------

ID	ECP flag	Elevation	Reference elevation	Error	Remarks
97960914	1	12.453	23.52	-11.067	Roof
97960916	1	12.054	12.97	-0.916	Near the building
97960920	2	20.576	14.66	5.916	Road with vegetation
97960924	1	12.677	13.36	-0.683	Cropland
97960926	1	10.524	10.69	-0.166	Cropland
97960928	2	14.608	19.92	-5.312	Building and tree
97960930	1	11.460	12.37	-0.910	Cropland
97960932	1	9.756	9.83	-0.074	Paddy field
97960934	2	30.476	31.19	-0.714	Roof
97960936	1	9.995	10.74	-0.745	Open space
97960938	3	14.560	11.75	2.810	Vegetation
97960940	2	11.699	9.97	1.729	Trees
97960942	1	10.525	11.15	-0.625	Cropland
97960944	2	31.953	12.52	19.433	Construction site
97960950	2	116.315	118.29	-1.975	Building
97960952	1	30.225	30.31	-0.085	Grassland

从表 3 中可以看出, 在农田、草地、裸地等区域, 03 星激光点高程精度较高, 在居民区、林地等有建 筑、树木的区域, 因光斑内地形地物复杂, 激光点的高 程精度相对较差, 这些区域的激光点应该尽量避免使 用。该验证区 16 个资源三号 03 星激光点的总体高 程精度为 (0.414±6.213) m, 经过高程控制点自动提取 后, 控制点标记为 1 的有 9 个, 占比约 52.9%, 除其中 点号为 97960914 的激光点因位于居民区的建筑物附 近, 高程误差达到 11 m 外, 剩下的 8 个点高程误差为 (-0.526±0.624) m, 满足 1: 50 000 立体测图高程控制点 精度要求^[19]。

3 复合测绘应用与分析

3.1 资源三号 03 星复合测绘实验

为了提升资源三号 03 星三线阵立体影像的高程 精度,利用资源三号 03 星光学立体影像和激光测高 数据同平台获取的特点,开展了激光测高点与光学立 体影像条带模式的联合测绘处理,评价利用激光测高 点提升立体影像高程精度是否满足1:50000测图精 度要求。选择了黑龙江试验区、河北太行山两个实验 区,其中黑龙江实验区位于东北平原,面积约3万km², 整个区域的地形起伏从海拔120~550m,其中南部是 平地地形,北部是丘陵和山地地形。河北太行山实验 区位于河北省太行山地区,整个区域的地形起伏从海 拔40~220m,属于山地地形。

2020年9月4日和11月4日资源三号03星第 663轨和1552轨分别经过河北太行山、黑龙江试验 区,同步获取了三线阵立体影像和激光点数据。为了 验证试验精度,分别采用分布于试验区内的 RTK-GPS 测量的115个和270个高精度外业点作为影像 检查点、并取其中的9个作为平面或平高控制点,所 有点的大地基准为 WGS84 坐标系,高程基准为 WGS84 椭球高,平面和高程精度均优于0.2 m,点位分布如 图5所示。

图 5 实验区复合测绘数据和外业检查点分布示意图

Fig.5 Distribution of combined surveying data and field check points in experimental regions

在区域网平差中,自动匹配的连接点中误差优于 0.3 pixel。如表 4 所示,为了有效验证和对比激光与 影像复合测绘的实验效果,每个试验区均开展了如下 4 组区域网平差实验:

A: 无任何控制条件下光学立体影像自由网平差, 验证立体影像的原始几何精度;

红外与激光工程 www.irla.cn

第5期

Region	Crown	roup Laser elevation Horizonta control point control po	Horizontal	al Ground int control point	Check point	RMS of check point/m	
	Group		control point			Horizontal	Elevation
Taihang mountain	А	0	0	0	115	26.99	11.25
	В	0	0	9	106	5.98	3.32
	С	6	0	0	115	27.43	4.45
	D	6	9	0	106	5.97	4.31
Heilongjiang flat	А	0	0	0	270	15.26	5.27
	В	0	0	9	256	4.99	2.41
	С	91	0	0	270	15.35	2.58
	D	91	9	0	256	5.04	2.56

表 4 实验区不同平差实验结果统计表

B:选取少量 RTK-GPS 点作为平高控制点,针对 立体影像开展区域网平差,验证常规控制条件下立体

影像的几何精度。 C:利用激光点作为高程控制点,开展立体影像与 激光点联合区域网平差,验证利用激光测高数据提升 光学立体影像的效果:

D:利用激光点作为高程控制,选取少量 RTK-GPS 点作为平面控制点,开展联合区域网平差,验证 引入平面控制时,利用激光测高数据提升光学立体影 像的效果。

3.2 结果分析

我国1:50000 立体测图成果的平面精度要求为 平地优于25m、山地优于37.5m,高程精度要求为平 地优于3m、山地优于5m。

对比实验组 A 和 B 可以发现,两个验证区在完 全无控制的情况下,平面精度能达标,但高程无法直 接满足要求,利用外业控制点后均能满足相关测图规 范要求。实验组 C 结果表明,单独采用激光点作为高 程控制,在没有其他控制数据的情况下,对立体影像 的平面精度几乎没有影响,但高程精度有较大提升, 其中河北太行山区从 11.25 m 提高到 4.45 m,黑龙江 地区从 5.27 m 提高到 2.58 m,均能满足 1:50 000 测 图要求。

对比实验组 B 和 C,黑龙江地区基于激光点和高 精度地面控制点的高程精度结果分别为 2.58 m 和 2.41 m,河北太行山区两者的高程精度提升对比结果 为 4.45 m 和 3.32 m,说明平原地区激光点的效果更明 显,基本可相当于外业控制点的水平。山区则因目前 的阈值探测模式及地形限制,点的分布如图 5(a)所示可能有一定欠缺,导致结果比外业控制点稍差,但是高程精度也已经满足我国1:50000山地区域高程精度要求。

实验组 D 的结果则表明,在激光与光学立体影像 联合区域网平差中加入适量的平面控制点后,在不影 响激光点对立体影像高程精度提升效果的同时,可进 一步提升试验影像的平面精度,使之完全满足我国1: 50 000 比例尺立体测图精度要求。

4 总结与展望

资源三号 03 星作为我国 1:50 000 比例尺的民 用高分辨率立体测图业务卫星,将在 01/02 星的基础 上,继续重点保障新型基础测绘、全球测图、地理国 情监测、实景三维中国等重大测绘工程建设。论文对 资源三号 03 星的激光测高数据处理及精度验证进行 了分析,同时对激光与立体影像复合测绘应用进行了 探讨,结果表明:

(1)资源三号 03 星激光测高仪基本继承 02 星,虽 然受卫星平台及硬件水平限制,但寿命指标以及精度 水平仍有较大改善,从试验性载荷变为业务化载荷, 从单阈值探测变为多阈值探测,内蒙古定标场附近激 光点高程验证精度为(0.051±0.232)m,优于 02 星的激 光测高水平;

(2) 基于阈值约束的激光高程控制点提取方法能 有效标记激光点质量, 江苏苏州城市建成区的激光点 总体精度为 (0.414±6.213) m, 经高程控制点提取和质 量标记后的激光点高程误差为 (-0.526±0.624) m, 能 满足1:50000立体测图高程控制精度要求;

(3) 无论平原、丘陵或山地地形区域, 通过激光测 高点与立体影像联合区域网平差处理后的立体影像, 其高程精度均可显著提升至满足我国1:50000比例 尺立体测图高程精度的水平, 这表明资源三号03星 的激光测高数据可以适用于全地形区域的立体影像 高程精度提升。

资源三号卫星星座已成为我国自然资源卫星遥 感观测体系的重要组成部分,是自然资源季度遥感监 测的主要数据源,资源三号 03 星成功交付以及三星 顺利组网运行,将进一步提升 1:50 000 比例尺立体 测图及 1:2.5 万比例尺地理信息更新能力,进一步提 高山水林田湖草等自然资源调查监测能力,进一步有 力支撑国家治理能力和治理体系现代化。

参考文献:

- Tang Xinming, Li Guoyuan. Earth Observing Satellite Laser Altimeter Data Processing Method and Engineer Practice[M]. Beijing: Science Press, 2019. (in Chinese)
- [2] Shu Rong, Huang Genghua, Kong Wei. Development and review of space-based laser altimetry technology [J]. *Infrared* and Laser Engineering, 2020, 49(11): 20201047. (in Chinese)
- [3] Schutz B E, Zwally H, Shuman C, et al. Overview of the ICESat mission [J]. *Geophysical Research Letters*, 2005, 32(21): 97-116.
- [4] Thomas A N, Anthony J M, Thorsten M, et al. The ice, cloud, and land elevation satellite-2 mission: A global geolocated photon product derived from the advanced topographic laser altimeter system [J]. *Remote Sensing of Environment*, 2019, 233: 111325.
- [5] Li Guoyuan, Tang Xinming. Analysis and validation of ZY-3 02 satellite laser altimetry data [J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 1939-1949. (in Chinese)
- [6] Tang Xinming, Chen Jiyi, Li Guoyuan, et al. Error analysis and preliminary pointing angle calibration of laser altimeter on Ziyuan-3 02 satellite [J]. *Geomatics and Information Science of Wuhan University*, 2018, 43(11): 1611-1619. (in Chinese)
- [7] Zhang Guo, Li Shaoning, Huang Wenchao, et al. Geometric calibration and validation of ZY3-02 satellite laser altimeter system [J]. *Geomatics and Information Science of Wuhan University*, 2017, 42(11): 1589-1596. (in Chinese)
- [8] Tang Xinming, Gao Xiaoming, Cao Haiyi, et al. The China

ZY3-03 mission surveying and mapping technology for highresolution remote sensing satellites [J]. *IEEE Geoscience and Remote Sensing Magazine*, 2020, 8(3): 8-17.

- [9] Li Guoyuan, Yao Jiaqi, Zhao Yiming, et al. Progress and prospect of atmospheric scattering correction for laser altimetry satellite [J]. *Infrared and Laser Engineering*, 2020, 49(11): 20200234. (in Chinese)
- [10] Yue Chunyu, Zheng Yongchao, Xing Yanqiu, et al. Technical and application development study of space-borne LiDAR in forestry remote sensing [J]. *Infrared and Laser Engineering*, 2020, 49(11): 20200235.
- [11] González J H, Bachmann M, Scheiber R, et al. Definition of ICESat selection criteria for their use as height references for TanDEM-X [J]. *IEEE Transactions on Geoscience and Remote Sensing*, 2010, 48(6): 2750-2757.
- [12] Li Guoyuan, Tang Xinming, Zhang Chongyang, et al. Multicriteria constraint algorithm for selecting ICESat/GLAS data as elevation control points [J]. *Journal of Remote Sensing*, 2017, 21(1): 96-104. (in Chinese)
- [13] Li Guoyuan, Tang Xinming, Gao Xiaoming, et al. Integration of ZY3-02 satellite laser altimetry data and stereo images for high accuracy mapping [J]. *Photogrammetric Engineering and Remote Sensing*, 2018, 84(9): 569-578.
- [14] Fang Yong, Cao Bincai, Gao Li, et al. Development and application of lidar mapping satellite [J]. *Infrared and Laser Engineering*, 2020, 49(11): 20201044.
- [15] Li Guoyuan, Gao Xiaoming, Chen Jiyi, et al. Data quality analysis of ZY-3 02 satellite laser altimeter [J]. *Journal of Remote Sensing*, 2019, 23(6): 1159-1166. (in Chinese)
- [16] Tang Xinming, Li Guoyuan, Gao Xiaoming, et al. The rigorous geometric model of satellite laser altimeter and preliminarily accuracy validation [J]. *Acta Geodaetica et Cartographica Sinica*, 2016, 45(10): 1182-1191. (in Chinese)
- [17] Gardner C S. Ranging performance of satellite laser altimeters [J]. *IEEE Transactions on Geoscience & Remote Sensing*, 1992, 30(5): 1061-1072.
- [18] Li Guoyuan, Tang Xinming, Fan Wenfeng, et al. On -orbit geometric calibration of spaceborne laser altimeter based on ground infrared detector [J]. *Infrared and Laser Engineering*, 2017, 46(11): 1117004. (in Chinese)
- [19] GB/T 12341 —2008. Specifications for aerophotogrammetric field work of 1 : 25000 1 : 50000 1 : 100000 topographic maps
 [S], 2008. (in Chinese)